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Abstract. Stochastic mean-field simulations for multifragmenting sources at the same excitation energy
per nucleon have been performed. The freeze-out volume, a concept which needs to be precisely defined
in this dynamical approach, was shown to increase as a function of three parameters: freeze-out instant,
fragment multiplicity and system size.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 25.70.Lm Strongly damped collisions
– 25.70.Pq Multifragment emission and correlations – 24.60.Ky Fluctuation phenomena

1 Introduction

Several hundreds of nucleons may be brought into inter-
action in central heavy-ion collisions around the Fermi
energy. Such reactions are good candidates to provoke a
liquid-gas–type phase transition —conceivable given the
nature of the nuclear force— and to break the system into
massive fragments [1,2]. The volume of such a source of
ejectiles at the instant when all of them become free of the
attractive force and feel only the Coulomb repulsion —the
freeze-out volume— brings information on the coexistence
of phases. It is a key quantity [3] to be connected to the
physical observables, asymptotically measured. If in the
statistical models [4–7] it is a basic a priori hypothesis, in
the following dynamical treatment this volume is provided
—at a given available energy— as a family of results illus-
trating the temporal and spatial evolution of the source
in multifragmentation.

Nuclear multifragmentation may occur when the
source has expanded through the spinodal region of
negative compressibility [1] of the liquid-gas coexis-
tence domain, a scenario valid for other many-body
systems, too [8,9]. Related Stochastic Mean-Field (SMF)
approaches [10–12] consider, under different approxima-
tions, the amplification of density fluctuations, due to
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N -body correlations, by the unstable mean field leading
to spinodal decomposition. The Brownian One-Body
(BOB) dynamics version, simulating the fluctuations by
means of a Brownian force in the mean field [13–15],
coupled to Boltzmann-Nordheim-Vlasov (BNV) one-body
density calculations [14], was successfully confronted
with multifragmentation data measured with the 4π
multidetector INDRA [16]. Two systems at close avail-
able energy per nucleon ∼ 7 MeV, were experimentally
studied: 32 A MeV 129Xe + natSn and 36 A MeV
155Gd + natU [29,17–22]. The comparison between sim-
ulated events for central collisions —filtered according
to the experimental features of INDRA— and the ex-
perimental data was recently extended from fragment
multiplicity M , charge Z, largest charge Zmax and bound-
charge Zbound = ΣZ distributions [18] to charge [19,21]
and velocity correlation functions and energy spectra [22].
The theoretical approaches developed in relation with the
advanced experimental methods of nuclear physics may
be esteemed in the new and more general physics of the
phase transition in finite systems [3,8,23].

As a reasonably successful dynamical description of
the multifragmentation process at intermediate bombard-
ing energies, the above-mentioned three-dimensional (3D)
SMF simulations provide a well-adapted framework to
address the question of the freeze-out volume. We fo-
cus in the present paper on disentangling the time, frag-
ment multiplicity and source size of the freeze-out volume
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dependence. A pragmatical definition of the freeze-out in-
stant is proposed.

2 Expanding sources provided by BOB

simulations

SMF simulations of nucleus-nucleus collisions based on
the Boltzmann-Langevin equation were proposed to treat
unstable systems [11,12,24] but their application to 3D
nuclear collisions is prohibited by computational limita-
tions. Instead, the spinodal decomposition of two diluted
nuclear sources, mentioned above, at the same tempera-
ture (≈ 4 MeV), was mimicked through the BOB dynam-
ics [13,15,18], applicable to locally equilibrated systems.
The Brownian force employed in the kinetic equations is
grafted on to the one-body density evolution, calculated
in a BNV approach [14], at the moment of maximum com-
pression t0 ≈ 40 fm/c after the beginning of the collision,
before the entrance of the system into the spinodal region.
Its strength can be tuned to describe the growth of the
most important unstable modes, ascribed to the density
fluctuations, which need a short, but finite time to de-
velop. The dispersion relation [25] puts them in evidence.
It includes quantal effects and connects the characteristic
time to its associated multipolarity. In turn, the multi-
polarity of the unstable collective modes, increasing with
the size of the source, may be related to the fragment
multiplicity [25,26]. The delimitation between fragments
—the “liquid drops”— and light clusters —“the gas”—
in which they are embedded is given by a cut-off value
ρmin ≥ 0.01 fm−3 of the nuclear density ρ [18].

The ingredients of the simulations of collisions at zero
impact parameter, as well as the selection criteria for the
complete events from experimental central collisions, can
be found in [18,27]. The fragments are defined as having
the atomic number Z ≥ 5. In the reported calculation, as
in the experimental selection, only events having the final
fragment multiplicity M ≥ 3 were considered [18]. The
calculated total charges of the multifragmenting sources
in the spinodal zone, Ztot = 100 for 129Xe + 119Sn and
Ztot = 142 for 155Gd + 238U are close to the experimen-
tally reconstructed ones [18]; INDRA identifies the mass
of the light charged products (Z < 5) but not that of
the fragments. The Skyrme force used in our simulations
is not isospin dependent. Consequently, the mass num-
bers of the sources, Atot = 238 (for the light one) and
Atot = 360 (for the heavy one), correspond to the con-
servation of the entrance channel N/Z ratio. The charge
distributions (normalized to the fragment multiplicity of
the event) measured [28] or simulated in BOB calcula-
tions [18], are identical in the two cases —consistent with
a bulk effect in the involved multifragmentation process.

Starting from the two initial partners of the reaction,
the BNV calculation leads to a spherical distribution of
matter. It undergoes a self-similar expansion, which is
not dramatically altered by the BOB simulations —fig. 1.
The simulated sources continue their rather isotropical
3D expansion in time, no particularly elongated or flat
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Fig. 1. One-event density evolution for each of the two
multifragmenting sources: Atot = 238 —upper panel— and
Atot = 360 —lower panel. The collision direction in the en-
trance channel is along the Z-axis and the unit is fm on both
axes of these X - Z views. The centre-of-mass coordinates are
X = Z = 20 fm.

shapes being produced. The concept of a radially symmet-
ric freeze-out volume keeps its full sense, provided that the
related instant may be singularized.

2.1 The freeze-out instant definition

The fragments are not all formed at the same mo-
ment, their mean multiplicity increasing in time, up to
∼ 250 fm/c [18] when it saturates at a value of about 5
for the lighter source (Ztot = 100, Atot = 238) associated
to the Xe + Sn reaction, and of about 8 for the heavier
one (Ztot = 142, Atot = 360) associated to the Gd + U
reaction. Indeed, even for the same final multiplicity of
a source, there are events where the density fluctuations
grow up faster and others where the process is slower. A
question of definition appears related to the freeze-out in-
stant. Our BOB calculations are recorded in steps of time
∆t = 20 fm/c starting from t0. Each event is traced back
in steps of 20 fm/c from its asymptotical configuration
(t ≈ 250 fm/c) of final multiplicity M to the moment
when the fragment multiplicity decreases by one unit. We
define the freeze-out instant of an event as the moment
when its final fragment multiplicity M was established.
It means that if at ti−1 = t0 + (i − 1)∆t the event has
the multiplicity M − 1 and at ti = t0 + i∆t it reaches the
final multiplicity M , ti will be considered as freeze-out in-
stant. All events which got their final multiplicity M at
the moment ti are treated together. Figure 2 shows, as an
example, the distribution of the moments t = ti at which
the final multiplicity M = 5 was reached for the lighter
source Atot = 238: t ∈ [120, 260] fm/c.
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Fig. 2. The distribution of the moments at which the final mul-
tiplicity M = 5 was reached for the source having Atot = 238.

2.2 Freeze-out configurations

For the sake of simplicity, the fragments are considered
as spheres of normal density, but the results are quite
independent of this particular hypothesis. The relative
distance djk between the surfaces of two fragments j, k
(j, k = 1÷M and j 6= k) in one event, that will be called
the intra-fragment distance in the following, is much vary-
ing for a given final multiplicity M : from a minimum of
the order of 1 fm between the two most recently splitted
fragments to a maximum value which increases with t.
This behaviour is shown —for the source (100, 238) and
the multiplicity M = 5— in the left-upper and left-middle
panels of fig. 3, at two different freeze-out instants: 180 and
240 fm/c. The distribution evolves towards larger distance
values in time, from an asymmetric to a more symmet-
ric shape. For the same two instants, the right-upper and
right-middle panels of fig. 3 present the distributions con-
cerning the source (142, 360) and M = 8. The evolution is
similar to the lighter source case. Together with the lower
panels, related to the freeze-out instant t = 180 fm/c and
the multiplicity M = 7 for both sources, the upper graphs
also show that, at the same moment (t = 180 fm/c), the
mean value of the relative distance depends on M for a
given source, while for different sources and the same mul-
tiplicity, e.g. M = 7, on the size of the source.

The distribution of the intra-fragment distances at a
certain moment is quite illustrative for the momentary
spatial configuration of the source: the shortest distances
concern the first-order neighbours, the longest ones the
largest size of the sources and, above all, the intermediate
values are qualitatively informing about the dilution of the
source. The first- and second-order moments of the distri-
bution and their dynamical evolution are appropriate to
synthetize this last aspect. As expected, these quantities,
analysed multiplicity by multiplicity, are increasing with
increasing t = ti, testifying on the enlargement of the mat-
ter distribution in the nuclear source in time. These values

Fig. 3. The distributions of relative distance djk between the
surfaces of two fragments j, k, simulated event by event and
related to two sources: Atot = 238 —left column— and Atot =
360 —right column, for various freeze-out instants and multi-
plicities.

are higher for the heavier source than for the lighter one,
and their increase in time seems to be slightly more pro-
nounced. The fact has to be put in connection with the
total Coulomb repulsion and the radial flow, higher for the
heavier system than for the lighter one [18,22]. An inter-
esting result is that, at constant values of t = ti, the mean
and the variance of intra-fragment distance distributions
increase with the multiplicity —a little bit more accentu-
ated for the lighter system. The slope of this dependence
is higher at later moments t.

For each group of events reaching a final multiplicity
M at a certain moment t = ti, one may look for the corre-
sponding local fragment concentration: dN/dV as a func-
tion of the vector radius absolute value r of the fragment
position in the source reference framework. Examples of
such distributions (at t = 180 and 240 fm/c) are given in
the left-upper and left-middle panels of fig. 4 for the lighter
source and M = 5. When the same source and final mul-
tiplicity are involved, the mean radius r̄ and full width
at half-maximum (FWHM) increase with the time t = ti
when the last two fragments are separated. In the right-
upper and right-middle panels of fig. 4 are represented
—for the heavier source— the local fragment concentra-
tion distributions at these two moments and the final mul-
tiplicity M = 8. As previously, the distribution evolves in
time towards larger radii; these radii are longer than in
case of the lighter source. For the same final multiplicity:
M = 7 and the same moment: t = 180 fm/c —the distri-
butions represented in the lower panels for both systems—
the mean radius r̄ and FWHM are longer in case of the
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Fig. 4. Radial distributions of the fragment concentra-
tion, simulated event by event and related to two sources:
Atot = 238 —left column— and Atot = 360 —right column,
for various freeze-out instants and multiplicities.

heavier source. The upper and the lower panels together
show that, for a given source at the same freeze-out in-
stant, r̄ varies in the same sense as M .

Except for the lowest multiplicity case for the lighter
source, the radial distributions of the fragment concen-
tration at the freeze-out instant are practically empty to-
wards short radii, as shown in fig. 4. They may be in-
terpreted hence as reminiscences of bubble-like configura-
tions.

3 The freeze-out volume

Once the freeze-out instant defined and the configura-
tions when the latest formed fragments get free of nu-
clear interaction found, one may look for the correspond-
ing volume. A sphere of radius r̄ + FWHM/2 englobes
most of the fragment centres. Its volume —a good esti-
mate of the quantity of interest— normalized at the vol-
ume V0 = (1.2)3Atot fm3 of the source at normal density
ρ0, is considered as a function of the freeze-out instant
t = ti at constant final multiplicity M of fragments. It
is represented with full curves in the left-column panels
of fig. 5 for the source Atot = 238. The expansion of the
source in time is evidenced: the dynamic process deliver-
ing the same final number M of fragments implies higher
volumes if it takes place at later instants. These volumes
increase from top to bottom with M , as well as the slopes
of their variation. By adding to the above spheres the com-
plements of fragment volumes which are exceeding them,
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Fig. 5. Freeze-out volumes as a function of the freeze-
out instant, for two sources: Atot = 238 —left column—
and Atot = 360 —right column. The full curves concern full
spheres, while the dashed ones correspond to hollow spherical
envelopes (see the text for explanations).

one gains roughly 10% on the freeze-out values, but the
general behaviour is not changed.

In fact, as shown in fig. 4, the shapes of the frag-
ment concentration distributions at freeze-out are gener-
ally Gaussian-like. About 75% of their integral is hence
comprised between r̄−FWHM/2 and r̄+FWHM/2. The
hollow envelopes delimited by the spheres with these radii
are a kind of lower limits of the corresponding freeze-
out volumes; always normalized at V0, they are drawn as
dashed curves. The right-column panels of fig. 5 show sim-
ilar results for the source Atot = 360. The curves seem to
rise slightly more rapidly than in the left column, in rela-
tion with the Coulomb effect and the radial flow.

The evolution with the multiplicity of the freeze-out
volume defined above, calculated for full or hollow spheres
and normalized at the volume of the corresponding source
at normal density, is shown in fig. 6 at given freeze-out mo-
ments. The dilution of the source increases with the frag-
ment multiplicity —slightly faster for the lighter system,
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different freeze-out instants, for two sources Atot = 238 —left
column— and Atot = 360 —right column. The full curves con-
cern full spheres, while the dashed ones correspond to hollow
spherical envelopes (see the text for explanations).

presenting a higher relative variation of M (left-column
panels) than for the heavier one (right-column panels);
the variation is more pronounced at larger times. It re-
flects the mechanism considered here for the multifrag-
mentation: the density fluctuations. The separation of the
fragments in such an expanding source is reached on be-
half of the lower density domains: the larger the number of
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Fig. 7. As in fig. 6 but for “time” averaged freeze-out volumes;
see the text for explanations.

fragments, the larger the number of zones between them.
Consequently, at the same freeze-out instant, the higher
the multiplicity, the bigger the source volume. From the
energetic point of view, a higher final fragment multiplic-
ity M implies a higher fraction of the excitation energy
consumed as binding (mainly surface) energy.

The freeze-out volumes provided by the present BOB
calculation, averaged over time and multiplicity, are, of
course, well fitting with those extracted, in the same
framework, by using the mean multiplicity information.
The corresponding densities ρ are compatible with the
general prediction ρ0/10 < ρ < ρ0/2 of the Statistical
Model for Multifragmentation (SMM) [5], in particular
with the value ρ0/3 used to study —in a nonsphericity hy-
pothesis in this latter model— the fragment velocity cor-
relations in the 32 A MeV 129Xe + natSn system [29]. The
present density values are lower than the average densities
corresponding to the same domain of excitation energy,
extracted from nuclear caloric curves [30,31]. The micro-
canonical model, analysing —all multiplicities together—
the same multifragmenting systems [7], leads to volume
values close to the present results but with a slightly lower
dilution for the heavier system than for the lighter one.

The increase of the freeze-out volume with the basic
experimental observable which is the fragment multiplicity
in an event is more pronounced than that obtained when
compacity criteria are used to fill the freeze-out domain
in a static scenario. For the first time, reliable values as
a function of time and final multiplicity are calculated.
They give a dynamical image of the multifragmentation
process at Fermi incident energies.

The final multiplicity of fragments is a measurable ob-
servable, while the time information is not directly acces-
sible in the experiments. By weighting the freeze-out vol-
ume values got at different freeze-out instants with respect
to the corresponding number of events, one may obtain a
kind of average freeze-out volume at a given final multi-
plicity. This “time” averaged quantity, which loses much of
its physical signification, indeed, is rapidly rising with M ,
as shown for the two sources in fig. 7. The variety of frag-
ment configurations, connected to the dynamical fluctua-
tions of the system volume on the fragmentation path, has
been recently related to monopole oscillations [9]. They
may push the system towards a metastable configuration
which eventually recontracts leading to low fragment mul-
tiplicities, or develops into a hollow configuration which
fragments at higher multiplicities.
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4 Conclusions

Stochastic mean-field simulations concerning the multi-
fragmenting sources formed in 32 A MeV 129Xe + 119Sn
and 36 A MeV 155Gd + 238U reactions have been per-
formed. Their validity has already been checked [18,19,21,
22] by reproducing measurable physical observables deter-
mined for these reactions with the 4π multidetector IN-
DRA. We found that the moment of separation of the
latest two nascent fragments —the definition adopted for
the freeze-out instant— is mainly distributed in the range
∼ (150–250) fm/c; multifragmentation is a dynamical pro-
cess which is fast but needs a finite time. The topology of
the associated freeze-out configurations is more complex
but also more realistic as compared to the simplifying hy-
pothesis in which the fragments, separated by a distance
of the order of the nuclear-interaction range, are forced to
fill in a prescribed volume, as generally done in statistical
codes.

The corresponding freeze-out volume could thus be dis-
entangled in connection with the freeze-out instant, final
fragment multiplicity and source size. For a given source
and a given multiplicity, the evolution of this quantity il-
lustrates the continuous expansion of the source in time.
On the other hand, at the same freeze-out instant, the vol-
ume of one source increases with the fragment multiplicity,
a basic measurable observable. As part of the energy as-
sociated to the internal degrees of freedom of the source is
going along into fragment separation energy, its volume is
dramatically increasing. And finally, for the same moment
and the same multiplicity, the freeze-out volume is bigger
for the heavier source, involving higher Coulomb repulsion
and radial flow.

The dilution of a multifragmenting source, quantified
as the ratio between its volume at freeze-out and its vol-
ume at normal density, is therefore increasing with time,
fragment multiplicity and source size. Further SMF sim-
ulations, employing an isospin-dependent nuclear force,
would allow to study the isospin fractionation [32,33], a
phenomenon expected to be amplified at high source dilu-
tion. A comparative experimental investigation of isoscal-
ing characteristics of these two systems prepared at the
same available energy is desirable, too.
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